If it's not what You are looking for type in the equation solver your own equation and let us solve it.
14y^2-13y-42=0
a = 14; b = -13; c = -42;
Δ = b2-4ac
Δ = -132-4·14·(-42)
Δ = 2521
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-13)-\sqrt{2521}}{2*14}=\frac{13-\sqrt{2521}}{28} $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-13)+\sqrt{2521}}{2*14}=\frac{13+\sqrt{2521}}{28} $
| 62(x-6)=24 | | 7/8=98/x | | _14=3(4x+7)_8 | | -x2+2x+3=-2x2+4x+6 | | 3x-(-4x)=(-5)^3+2x | | -3x-5=-4-4x | | 0=4x+3x² | | 7/90=8/x | | 8^-7x=15^-2-7 | | 9s-7=-4s+7 | | -5-k=-8-5k | | -4(2r+1)=-6+r | | -9-6y=2+2y | | 1/3-3x/4=5/6+x/2 | | 3(3x–2)=–33 | | (-22+3x)/(3x+7)=2 | | -4.905x^2+16x-6=0 | | 4.905x^2+16x-6=0 | | 6+4x-18=2(2x+5)-22 | | (Z+4)(z+5)=0 | | 100×5-k=k | | 10x+6-2(6+5x)=9 | | -4-x-2x+13=4x+2 | | x=11×+44/2 | | 4^3x-7=50 | | -4(m+1)-m-8=-5(m+4)+8 | | -6j+6=j+3 | | 1=x+3/12 | | -4+a/1=0 | | 8x-12=-(-3x+13) | | 73=5-4x | | n+5/4=1 |